Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 955134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816585

RESUMO

Malaria, which infected more than 240 million people and killed around six hundred thousand only in 2021, has reclaimed territory after the SARS-CoV-2 pandemic. Together with parasite resistance and a not-yet-optimal vaccine, the need for new approaches has become critical. While earlier, limited, studies have suggested that malaria parasites are affected by electromagnetic energy, the outcomes of this affectation vary and there has not been a study that looks into the mechanism of action behind these responses. In this study, through development and implementation of custom applicators for in vitro experimentation, conditions were generated in which microwave energy (MW) killed more than 90% of the parasites, not by a thermal effect but via a MW energy-induced programmed cell death that does not seem to affect mammalian cell lines. Transmission electron microscopy points to the involvement of the haemozoin-containing food vacuole, which becomes destroyed; while several other experimental approaches demonstrate the involvement of calcium signaling pathways in the resulting effects of exposure to MW. Furthermore, parasites were protected from the effects of MW by calcium channel blockers calmodulin and phosphoinositol. The findings presented here offer a molecular insight into the elusive interactions of oscillating electromagnetic fields with P. falciparum, prove that they are not related to temperature, and present an alternative technology to combat this devastating disease.


Assuntos
COVID-19 , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Micro-Ondas , SARS-CoV-2 , Malária Falciparum/parasitologia , Plasmodium falciparum , Mamíferos
2.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208612

RESUMO

In this research, we intended to examine the effect of heating mode on the densification, microstructure, mechanical properties, and corrosion resistance of sintered aluminum alloys. The compacts were sintered in conventional (radiation-heated) and microwave (2.45 GHz, multimode) sintering furnaces followed by aging. Detailed analysis of the final sintered aluminum alloys was done using optical and scanning electron microscopes. The observations revealed that the microwave sintered sample has a relatively finer microstructure compared to its conventionally sintered counterparts. The experimental results also show that microwave sintered alloy has the best mechanical properties over conventionally sintered compacts. Similarly, the microwave sintered samples showed better corrosion resistance than conventionally sintered ones.

3.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068199

RESUMO

The effect of molybdenum additions on the phases, microstructures, and mechanical properties of pre-alloyed Ti6Al4V was studied through the spark plasma sintering technique. Ti6Al4V-xMo (where x = 0, 2, 4, 6 wt.% of Mo) alloys were developed, and the sintered compacts were characterized in terms of their phase composition, microstructure, and mechanical properties. The results show that the equiaxed primary alpha and Widmänstatten (alpha + beta) microstructure in pre-alloyed Ti6Al4V is transformed into a duplex and globular model with the increasing content of Mo from 0 to 6%. The changing pattern of the microstructure of the sample strongly influences the properties of the material. The solid solution hardening element such as Mo enhances mechanical properties such as yield strength, ultimate tensile strength, ductility, and hardness compared with the pre-alloyed Ti6Al4V alloy.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562766

RESUMO

In the present work, nano Cu (0, 5, 10, 15, 20, 25 wt.%) was added to W, and W-Cu composites were fabricated using the spark plasma sintering (S.P.S.) technique. The densification, microstructural evolution, tensile strength, micro-hardness, and electrical conductivity of the W-Cu composite samples were evaluated. It was observed that increasing the copper content resulted in increasing the relative sintered density, with the highest being 82.26% in the W75% + Cu25% composite. The XRD phase analysis indicated that there was no evidence of intermetallic phases. The highest ultimate (tensile) strength, micro-hardness, and electrical conductivity obtained was 415 MPa, 341.44 HV0.1, and 28.2% IACS, respectively, for a sample containing 25 wt.% nano-copper. Fractography of the tensile tested samples revealed a mixed-mode of fracture. As anticipated, increasing the nano-copper content in the samples resulted in increased electrical conductivity.

5.
Materials (Basel) ; 14(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430402

RESUMO

The traditional solid-state reaction method was employed to synthesize bulk calcium cobaltite (Ca349/Ca3Co4O9) ceramics via ball milling the precursor mixture. The samples were compacted using conventional sintering (CS) and spark plasma sintering (SPS) at 850, 900, and 950 °C. The X-ray diffraction (XRD) pattern indicates the presence of the Ca349 phase for samples sintered at 850 and 900 °C. In addition, SPS fosters higher densification (81.18%) than conventional sintering (50.76%) at elevated sintering temperatures. The thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) performed on the precursor mixture reported a weight loss of ~25.23% at a temperature range of 600-820 °C. This current work aims to analyze the electrical properties (Seebeck coefficient (s), electrical resistivity (ρ), and power factor) of sintered samples as a function of temperature (35-500 °C). It demonstrates that the change in sintering temperature (conventional sintering) did not evince any significant change in the Seebeck coefficient (113-142 µV/K). However, it reported a low resistivity of 153-132 µΩ-m and a better power factor (82-146.4 µW/mK2) at 900 °C. On the contrary, the SPS sintered samples recorded a higher Seebeck coefficient of 121-181 µV/K at 900 °C. Correspondingly, the samples sintered at 950 °C delineated a low resistivity of 145-158 µΩ-m and a better power factor (97-152 µW/mK2).

6.
Artigo em Inglês | MEDLINE | ID: mdl-24427858

RESUMO

Microwave processing steps of 0.95[(K0.5Na0.5)0.94Ag0.06NbO3]-0.05[LiSbO3]/(KNAN-LS) lead free ferroelectric ceramics were optimized for better densification and electrical properties. Calcination temperature and time for single perovskite phase formation were optimized and found to be 850 degrees C for 60 min., respectively. Crystal structural study revealed the presence of mixed structure in the microwave processed (MWP) KNAN-LS ceramics. The sintering of the KNAN-LS ceramics was carried out at 1080 degrees C for 10 min, 20 min and 30 min, respectively, and the sample sintered for 20 min exhibited best properties.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/efeitos da radiação , Calefação/métodos , Micro-Ondas , Óxidos/química , Óxidos/efeitos da radiação , Prata/química , Prata/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Cerâmica/química , Cerâmica/efeitos da radiação , Condutividade Elétrica , Dureza/efeitos da radiação , Teste de Materiais , Tamanho da Partícula , Transição de Fase/efeitos da radiação , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...